
Failure Mode Analysis of an Autonomous Guided

Robot using JDBC

A thesis submitted to the Division of

Graduate Studies and Advanced Research

Of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

MASTER OF SCEIENCE

In the Department of Mechanical, Industrial and Nuclear Engineering

Of the College of Engineering

2000

by

Vishnuvardhanaraj Selvaraj

B.E (Mechanical Engineering), Kumaraguru College of Technology,

Bharathiyar University, Coimbatore

India, 1998

Thesis Advisor and Committee Chair: Dr. Ernest L. Hall

 2

Table of Contents

Chapter 1 Introduction Page number

 1.1 Objective 9

1.2 Organization of Thesis 9

Chapter 2 Major Systems and Components of Bearcat

2.1 Power System 10

2.2 Vision System 11

2.3 Mechanical System 12

2.4 SONAR System 13

Chapter 3 Database Design

3.1 Need for the database 15

3.2 Advantages of Relational Database 15

3.3 Database Development Methodology 16

3.4 Design of Failure Mode Analysis Database 18

Chapter 4 Java Database Connectivity- JDBC

4.1 What is JDBC 21

4.2 JDBC Architecture 22

4.3 The Purpose and need for JDBC 24

 3

4.4 How JDBC Works

4.4.1 Establishing a Connection 25

4.4.2 Creating JDBC Statements 26

4.4.3 Executing Statements 27

4.4.4 Retrieving Values from Result Sets 27

4.4.5 Using the Method next 27

4.4.6 Using Prepared Statements 28

4.4.7 Creating a PreparedStatement Object 29

4.4.8 Supplying Values for PreparedStatement Parameters 29

4.4.9 Creating the Complete JDBC Application 31

4.4.10 Using try and catch Blocks 31

4.5 Features and Advantages of JDBC 32

Chapter 5 Working of Online fault Diagnosis System

5.1 Development of the user interface 36

5.2 Handling of the Action Events 37

Chapter 6 Conclusions and Recommendations 39

Appendix A - Program Scripts that are used in the Online Fault Diagnosis System

Appendix B - Contents of Database Table

Appendix C - Establishing Connection between the Database and the Java Program

 4

Abstract

Diagnosis of Faults and problems in equipment is a vitally important contributor

to throughput and efficiency of the equipment. This work describes the development of

Online Fault Diagnosis System for the Bearcat Robot using a cutting edge technology

called Java Database Connectivity (JDBC). The approach followed in improving fault

diagnosis efficiency is to capture and reuse know-how that exists in the heads of the key

individuals who really understand how the Bearcat Robot works. The robot is

sub-divided into different functional units as the Power System, Mechanical System,

Vision guidance System and Ultrasonic Obstacle Avoidance System called SONAR. This

in turn is divided into specific component. For each specific part taken into consideration,

the failure mode is analyzed in the form of the possible failure symptom, the reason why

the part fails and finally the steps to be taken to rectify the fault are discussed.

The information then obtained is designed as a database table. This is presented

by means of a Java Applet, the link of which is available in the UC Robot Web page. The

technology used to establish the connection between the database and the Java Applet is

JDBC. It is possible to develop database applications using Java and provide a standard

interface between user and the database server using JDBC. The JDBC API can be used

regardless of what database is being used in the back end and it is supported by a large set

of JDBC drivers. The online system could be accessed anytime from any part of the

world with a web browser and the connection to the Internet. The provision is made such

that user authenticity is obtained before allowing the user to access the data. Thus the

system developed helps in cutting down the time required for diagnosing a fault.

 5

Acknowledgements

I am grateful to my advisor Dr. Ernest Hall for giving me an opportunity to work

on the cutting edge technology of JDBC. He has been the constant source of support for

gathering relevant resources and information. He helped and encouraged me from all

perspectives to complete this work.

I am thankful to the team members of the robotic team for providing their

valuable suggestions and supporting my work.

I wish to thank my committee members Dr. Richard L. Shell and Dr. Ronald L.

Huston for supporting my work. I take this opportunity to thank the entire faculty and

staffs of MINE department for helping in pursue my masters at University of Cincinnati.

Last but not least my parents and family should be thanked. They stand behind all

my success.

 6

List of Figures

Chapter 1 Page Number

 Bearcat Robot 8

GUI Interface 9

Chapter 2

 Elements of Power System 12

 Elements of Vision System 13

 Elements of Mechanical System 14

Elements of SONAR System 15

Chapter 3

 Diagrammatic Representation of Database Design 18

 Diagram indicating the Design of Fault Diagnosis Database 20

 Sample Database 21

Chapter 4

 General Functionality of JDBC 22

Databases via the pure java jdbc technology-based drivers. 24

 JDBC connectivity using ODBC drivers and existing 24

database client libraries

 Connecting to a Database System 34

 Architecture of Fault Diagnosis System 36

 Layout of the User Interface 37

 Flow of Action Events 39

 7

Chapter One

Introduction

The present day requirement for ever-increasing reliability is now more important

than ever before and continues to grow constantly. Advances are continually being made

in engineering. This means that the detection, location and analysis of faults play a vital

role. The need to have efficiency and safety in the design and development of Automated

Guided Vehicle (AGV) leads to the development of diagnostic strategies that could cover

the major potential faults of the AGV.

A hi-tech product like Robot needs a sophisticated system for analyzing the

failures, storing the related information in an integrated repository and retrieving the

same via standard user-friendly interface. The Center for Robotics Research at University

of Cincinnati has been developing Robot for the past 13 years. The Bearcat robot of UC

Robotics team has undergone two major versions till now. The latest version called

Bearcat II is an Autonomous Guided Vehicle.

Fault diagnosis system provides a systematic review of the components,

assemblies and subsystems of a product to identify single point failures and the causes

and effects of such failures. It identifies and tabulates the potential modes by which

equipment or a system might fail and the consequences such a failure would have on the

equipment or system being studied.

 8

The picture of the Bearcat II robot is shown below. It weighs 450 lbs. and is 2 feet

wide and 4 feet long.

Figure 1: BEARCAT Robot

The user-friendly Java applet developed using JDBC technology is shown in the

picture below. This applet establishes the connection with the database developed in the

back end using Microsoft Access. In the picture, the major system is chosen as

Mechanical System from the list one and the sub component is chosen as Servo Motor in

the list two. The possible fault symptom for this combination, the reason why it happens

and the solution to rectify it has been shown in the text fields placed below the list. The

UC logo is used as a button to get the results for the queries posed.

 9

Figure 2: GUI Interface

 10

1 . 1 Objective

The objective of the project is to develop the fault diagnosis system using the

latest web technology, JDBC. The Java Applet developed is made available from the UC

Robot web page. Presently the system is designed for the team use alone and this is

ensured with secure login. The features of the Online Fault Diagnosis are

v A user friendly Java Applet interface to connect to the database

v Functionality to check for user authentication

v Options to choose between major units and its sub-classifications

v A Comprehensive data table showing the information for fault diagnosis

v The online system could be accessed anytime from any part of the world with a

web browser and the connection to the Internet

1 . 2 Organization of the Thesis

I have organized my documentation in separate chapters, which differentiates the

ideas and technologies that I have used to develop the web application.

 Chapter 2 describes the idea for grouping the components of the robot into major

units and its sub units. Chapter 3 deals with the database design for storing the

information about various faults and their solutions. Chapter 4 deals with the explanation

of the platform independent JDBC technology and its key features giving the required

flexibility. The working of the application is explained in chapter 5, while the final

outputs and future recommendations are discussed in chapter 6.

The appendix A shows the programming codes and appendix B shows database

tables used to obtain the results.

 11

Chapter Two

Major Systems and Components of Bearcat robot

In order to obtain the failure modes for individual subsystems as well as the entire

robot, a thorough study and grouping of the components is essential. This chapter

outlines system description of Bearcat II, by grouping the components into major units

and a sub classification of the major units. For efficient operation of the robot not only

should the individual subsystems work satisfactorily but they also should work in

tandem. This thorough analysis has been tremendously useful in understanding the

architectural, functional and behavioral details of the system.

According to the functionality the robot has been categorized into major units as

v Power System

v Vision System

v Mechanical System

v SONAR system

Power System

The Power system is further classified into seven finite elements. Power system of

the robot consists of the components that help to power the electrical components of the

robot. The heart of the power system being the Solenoid acts as a switch, which can be

controlled to cut off the power during emergency.

 12

The database consists of the Power System as the attribute value in the major unit

column. The other major parts involved in the power system are Battery, Inverter, Fuse,

Servo Motor and SONAR Motor. The Schematic diagram showing the major components

of the power system is shown below.

Vision System

Vision systems consists of an optical system to collect and focus the light from a

finite field view and an optoelectrical system to take focused light and give a computer

readable signal. This mapping of the two-dimensional points and reorganization of the

three-dimensional image is done by the vision calibration. The robot has to follow a track

POWER SYSTEM

Battery

Fuse

Inverter

Main Switch

SONAR Motor

Servo Motor

Solenoid

Figure 3: Elements of Power System

 13

of 10 feet width with two lines on either side of it. It tracks either one of the lines and

makes its navigation parallel to that line. If there is a break in that line, it searches for the

line on the other camera.

The vision system defines the components that assist in the line following of

Bearcat II. It consists of two JVC CCD cameras mounted on either side of the robot, such

that a clear line tracking can be achieved. The sub classification the vision system yields

the following components for fault diagnosis.

Mechanical System

The mechanical system as a whole serves as steering control for the robot. The

components include 40:1 reduction gearbox, two pairs of flexible couplings, two 36 volts

servomotors and two sets of wheels with shafts, couplings and keys. The computer

VISION SYSTEM

Vision Threshold

Switching Unit

CCD

ISCAN

Figure 4: Elements of Vision System

 14

through Galil motion controller controls the servomotors. The schematic diagram

showing the components is listed below.

SONAR System

SONAR system is used for obstacle avoidance, apart from the vision system. The

rotating sonar mounted in front of the robot senses them with the width of space occupied

by the obstacle and distance from where robot sensed the obstacle is navigated around.

MECHANICAL SYSTEM

Wheel

Lubricant

Fitting

Coupling

Wheel Shafts

Alignment

Servo Motor

Shaft Keys

Figure 5: Elements of Mechanical System

 15

For accurate path navigation it is essential that the obstacle avoidance system

function properly. This system consists of a rotating transducer, which makes mirror

stops on either side of the centerline for obstacle avoidance.

The major units are then sub classified into specific units for the purpose of

building the relational database, which holds the information about the fault analysis of

each component. Each specific unit is then analyzed for its failures and the required

actions are then recorded which becomes an important source of information during the

break down of the robot.

SONAR SYSTEM

PID

Polaroid

Polakit

Program

Fastening

SONAR wire

SONAR Height

Figure 6: Elements of SONAR System

 16

Chapter Three

Database Design

Need for the Database

Database systems are primarily concerned with the creation and maintenance of

large and long-lived collections of data. It is a self-describing collection of integrated

records and the repository of the data. The three main things you do with data are acquire

it, store it and retrieve it. A relational database management system gives you a way of

doing these tasks in an understandable and reasonably uncomplicated way. Organizing

the various faults analyzed in various systems in a database will be very helpful for future

reference and will be a better form of data management.

Relational database management systems currently constitute the most widely

used mechanism for storing business information within the industry. It typically

provides support for storing data used in traditional business applications such as banking

transactions and inventory control. This important fundamental technology provides

businesses with a flexible environment within which to store, retrieve, and process the

data associated with the core systems they use. The structured query language (SQL) is

now a widely accepted standard for both retrieving and updating data.

Advantages of Relational Database

The advantages of a relational database are numerous. Some of them are as

follows

v Data entry, updates and deletions will be efficient.

 17

v Data retrieval, summarization and reporting will also be efficient.

v Being well-formulated database, its behavior is predictable

v It is self-documenting.

v Changes to the database schema are easy to make.

Database Development Methodology

 The various phases that are involved in the database design methodology of a

fault diagnosis system are as follows.

v Understanding System Requirements: Finding out the requirements involved in

developing is the first step. They will feed number of entities, attribute names, and

types of data stored in each attribute. For example, in the Vision system

developed for fault diagnosis, major system is the entity, reason for failure and

solutions are the attributes and the type of data stored in each attribute is a string.

v Build Logical Data Model: The logical data model is built iteratively. The first

view usually is done at a high level, beginning with a subject area or conceptual

data model. Subsequent levels contain more detail like the failure analysis for the

various components involved in any major system.

v Build the Physical Data Model: The logical data model is converted to a physical

data model based on the specific database that is used. The major system of the

robot and the specific component of the major system are used in all the queries

used to retrieve data from the database.

 18

v Refine the Data Model: The physical data model is refined continuously as more

information becomes available, and the results of stress testing and benchmarking

become available to the database development team.

v Populate the Data: After the database structure is established and the database is

created, it is necessary to populate the database. This can be done through data

scripts, applications, or data conversions.

Figure 7: Diagrammatic Representation of Database Design

 19

Design of Failure Mode Analysis Database

 The Relational Database was created using Microsoft Access. The file was

named dbaccess.mdb. The major attributes of the database developed are

v Major System

v Specific Component

v Fault Symptom

v Reason for Failure

v Solution to the Fault

The major system denotes the system of the robot on which we are looking for the

fault. The major systems covered in the database are Mechanical System, Vision System,

Power System and the SONAR System. The specific component refers to the sub parts

of the major system. For each specific part taken into consideration, the failure mode is

analyzed and solution is provided. Then for each failure mode analyzed, the possible

failure symptom, the reason why the part fails and the steps to be taken to rectify the part

is discussed. Dividing them into major sub systems and then into specific components

covers almost the entire system of the Robot.

Each fault symptom is then analyzed depending on how the failed component is

related to the rest of the components in the system. It is seen that for the same sub-

classified unit there maybe more than one potential mode of failure. Once the fault

symptom is known, then the possible reasons are analyzed so that the source of problem

could be targeted and concentrated for fixing up the problems. The schematic diagram

showing the design of the database is shown below.

 20

The database is queried using SQL (Structured Query Language) and forms the

central repository for accessing the information pertaining to the failures for the particular

components and their potential effects and causes. The solutions provided for each failure

has been obtained over the time with experience and also widely known facts.

An instance of the database table having the various values that it holds for the

Mechanical System and the Vision System is shown below. This information could be

upgraded to any database system with third party software’s available in the markets.

 MAJOR SYSTEM

SOLUTION

SPECIFIC COMPONENT SPECIFIC COMPONENT SPECIFIC COMPONENT

Failure symptom REASON FOR FAILURE

Figure 8: Diagram indicating the Design of Fault Diagnosis Database

 21

System

Component Fault Symptoms Reason for Failure Solutions to the Fault

Mechanical Wheel2 Wheel coming off the shaft Screw coming off the retainer
Check the size of the retainer screw size

and secure it tightly

Mechanical Fitting1
Heating of the main wheel

bearings
Misalignment of the bearing and

the plumber block
Check the levels with the spirit levels and

adjust the plumber block

Mechanical Fitting2 Wheels jammed
A bulged shaft due to improper

fit
Filing or grounding of the shaft and inner

hub of the wheel is necessary

Mechanical Alignment1
Wheels doesn't turn

smoothly
Improper lubrication and

alignment
greasing on the inner surface of the

coupling is necessary

Mechanical Lubricant
Increase in the gear

meshing noise Lubricant level in the gearbox
The lubricant levels must be checked and

filled with specified grade oil

Mechanical Alignment2 Heating of servo motors
Alignment between servo motor

and the gear box shaft
Horizontal and vertical alignment of the

shafts to be done

Mechanical Coupling Heating of servo motors Improper coupling alignment
Check the coupling between motor and
gearbox and lubricate them frequently.

Mechanical
Servo
Motor1

Servo motors turns very
slowly Amplifier output is insufficient

Re-adjust amplifier gain value and PID
values

Mechanical
Servo
Motor2

Servo motor doesn't rotate
according to the pulses Improper feedback

Make sure encoder meshes without slip and
check the feedback circuit

Mechanical Wheel Shaft
Wheel Shaft slipping out of

coupling Bending of wheel shaft
The wheel shaft must be secured with a
collar on the inner side of the bearing

Mechanical Shaft Keys Key Moving out of its place
Shaft gets disengaged from the

coupling and Robot stops
The shaft keys must be tightened at regular

intervals with the Allen screw

Vision
Vision

Threshold1 No points picked Threshold limit not reached Adjust threshold

Vision CCD No points picked CCD camera not working
Check connections wrt to the schematic

diagram

Vision ISCAN1 Coordinates not available ISCAN tracker is not functioning Check the circuit and connections

Vision
Vision

Threshold2 Incorrect points picked
Points outside the line are

brighter
Readjust the threshold so that image on the

line is seen as black image

Vision
Switching

Unit1 Camera switch fails
Galil board controller not

working Reset the galil board

Vision
Switching

Unit2
Camera doesn't switch

properly Switching unit not working
Check connections wrt to the schematic

diagram

Vision ISCAN2 Cannot calibrate
Image obtained doesn't reflect
properly in the video monitors

Adjust the ISCAN settings written as
specified on the robot panel

 22

Chapter Four

JDBC Technology

What is JDBC

JDBC technology is an API that lets you access virtually any tabular data source

from the Java programming language. It provides cross-DBMS connectivity to a wide

range of SQL databases, and now, with the new JDBC API, it also provides access to

other tabular data sources, such as spreadsheets or flat files.

The JDBC API allows developers to take advantage of the Java platform's

capabilities for industrial strength, cross-platform applications that require access to

enterprise data. With a JDBC technology-enabled driver, a developer can easily connect

all corporate data even in a heterogeneous environment.

 Figure 10: General Functionality of JDBC

 23

 JDBC makes it possible to develop database applications using Java and

provides a standard interface between you and the database server. The JDBC API can be

used regardless of what database is being used in the back end and it is supported by a

large set of JDBC drivers. Using JDBC, a developer could execute SQL statements from

any relational database. It is not necessary to develop a separate program to access

databases from different vendors.

JDBC Architecture

A Java application built on top of JDBC API goes through three different phases:

v Open a connection to a database

v Create a statement objects through which it passes SQL statements to the DBMS

v Retrieve the results

The JDBC API contains two major sets of interfaces: the first is the JDBC API for

application writers, and the second is the lower-level JDBC driver API for driver writers.

JDBC technology drivers fit into one of four categories. Applications and applets can

access databases via the JDBC API using pure Java JDBC technology-based drivers.

v Type 3 - Pure Java Driver for Database Middleware: This style of driver translates

JDBC calls into the middleware vendor's protocol, which is then translated to a

DBMS protocol by a middleware server. The middleware provides connectivity to

many different databases.

 24

v Type 4 - Direct-to-Database Pure Java Driver: This style of driver converts JDBC

calls into the network protocol used directly by DBMS’s, allowing a direct call

from the client machine to the DBMS server and providing a practical solution for

intranet access.

The graphic below illustrates JDBC connectivity using ODBC drivers and existing

database client libraries.

Figure 11: DATABASES VIA THE PURE JAVA JDBC TECHNOLOGY-BASED DRIVERS.

Figure 12: JDBC connectivity using ODBC drivers and existing database client libraries.

Type 4 Type 3

Type 1 Type 2

 25

v Type 1 - JDBC-ODBC Bridge plus ODBC Driver: This combination provides

JDBC access via ODBC drivers. ODBC binary code--and in many cases, database

client code-- must be loaded on each client machine that uses a JDBC-ODBC

Bridge. Sun provides a JDBC-ODBC Bridge driver, which is appropriate for

experimental use and for situations in which no other driver is available.

v Type 2 - A native-API partly Java technology-enabled driver: This type of driver

converts JDBC calls into calls on the client API for Oracle, Sybase, Informix,

DB2, or other DBMS. Note that, like the bridge driver, this style of driver requires

that some binary code be loaded on each client machine.

 The Purpose and need for JDBC

v The emerging need of database connectivity for Java Applets will be met.

v Java's focus of cross-platform compatibility will be satisfied. There will be one

uniform interface for programmers.

v Internet considerations will be fulfilled because of access to many types data

sources (Oracle, Sybase, etc)

v The need to have a better low-level programming interface than ODBC. JDBC is

simpler, based on Java (so no pointers like ODBC), and more secure.

 26

How JDBC Works

The steps to accessing a relational database using JDBC are explained in detail

below. It is assumed a database already exists.

 Establishing a Connection

The first thing you need to do is establish a connection with the DBMS you want to use.

This involves two steps: (1) loading the driver and (2) making the connection.

Loading Drivers

Loading the driver or drivers you want to use is very simple and involves just one line

of code. If, for example, you want to use the JDBC-ODBC Bridge driver, the following

code will load it.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

There is no need to create an instance of the driver and register it with the Driver

Manager because calling Class.forName will do that automatically. When a driver is

loaded, it is available for making a connection with a DBMS.

Making the Connection

 The second step in establishing a connection is to have the appropriate driver

connect to the DBMS. The following line of code illustrates the general idea.

 Connection = DriverManager.getConnection (url);

 If the JDBC-ODBC Bridge driver is used, the JDBC URL will start with

jdbc:odbc: . The rest of the URL is generally the data source name or database system.

So, if ODBC is used to access an ODBC data source called " dbaccess " for example, the

JDBC URL could be jdbc:odbc: dbaccess. If one of the drivers loaded recognizes the

 27

JDBC URL supplied to the method DriverManager.getConnection, that driver will

establish a connection to the DBMS specified in the JDBC URL. The Driver Manager

class manages all of the details of establishing the connection behind the scenes. The

connection returned by the method DriverManager.getConnection is an open connection

that can be used to create JDBC statements that pass SQL statements to the DBMS.

Creating JDBC Statements

A Statement object sends the SQL statement to the DBMS. A Statement object is

created and then executed by supplying the appropriate execute method with the SQL

statement. For a SELECT statement, the method to use is executeQuery. For statements

that create or modify tables, the method to use is executeUpdate. The statement object is

created as shown below.

Statement stmt = connection.createStatement();

The following example shows how the executeUpdate method is supplied

along with the SQL code.

stmt.executeUpdate("SELECT a,b,c FROM Table “);

Instead of the way it is written above, the whole query could be written in a string

called “query” and the same method can be called as follows.

stmt.executeUpdate(query);

 28

Executing Statements

The method executeUpdate is used because the SQL statement is a DDL (data

definition language) statement. Statements that create a table, alter a table, or drop a table

are all examples of DDL statements and are executed with the method executeUpdate.

The method executeUpdate is also used to execute SQL statements that update a table. In

practice, executeUpdate is used far more often to update tables than it is to create them

because a table is created once but may be updated many times.

. The method used most often for executing SQL statements is executeQuery.

This method is used to execute SELECT statements, which comprise the vast majority of

SQL statements.etrieving Values from Result Sets

Retrieving Values from Result Sets

JDBC returns results in a ResultSet object, so an instance of the class ResultSet need

to be declared to hold the results. The following code demonstrates declaring the ResultSet

object rs and assigning the results of our earlier query to it.

ResultSet rs = stmt.executeQuery (“SELECT name.number FROM

addressbook");

Using the Method next

The variable rs, which is an instance of ResultSet, contains the rows of name and

number. To access hem, each row is to be reached and the values are retrieved according

to the type of data. The method next moves what is called a cursor to the next row and

 29

makes that row the current row. Since the cursor is initially positioned just above the first

row of a ResultSet object, the first call to the method next moves the cursor to the first row

and makes it the current row. Successive invocations of the method next move the cursor

down one row at a time from top to bottom.

Using Prepared Statements

Sometimes it is more convenient or more efficient to use a PreparedStatement

object for sending SQL statements to the database. This special type of statement is

derived from the more general class, Statement. If there is a need to execute a Statement

object many times, it will normally reduce execution time to use a PreparedStatement

object instead.

The main feature of a PreparedStatement object is that, unlike a Statement object,

it is given an SQL statement when it is created. The advantage to this is that in most

cases, this SQL statement will be sent to the DBMS right away, where it will be

compiled. As a result, the PreparedStatement object contains not just an SQL statement,

but also an SQL statement that has been precompiled. This means that when the

PreparedStatement is executed, the DBMS can just run the PreparedStatement 's SQL

statement without having to compile it first. Although PreparedStatement objects can be

used for SQL statements with no parameters, you will probably use them most often for

SQL statements that take parameters. The advantage of using SQL statements that take

parameters is that, the same statement can be used repeatedly by supplying it with

different values each time it is executed.

 30

Creating a PreparedStatement Object

As with Statement objects, PreparedStatement objects are created with a

Connection method. An example of creating a PreparedStatement object that takes two

input parameters is shown below.

PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");

The variable updateSales now contains the SQL statement, "UPDATE COFFEES SET

SALES = ? WHERE COF_NAME LIKE ?”, which has also, in most cases, been sent to

the DBMS and been precompiled.

Supplying Values for PreparedStatement Parameters

Values need to be supplied in place of the question mark placeholders, if there are any,

before executing a PreparedStatement object. Calling one of the setXXX methods defined

in the class PreparedStatement does this. If the value to be substituted for a question mark

is a Java int, the method setInt is called. If the value is a Java String, the method setString

is called, and so on. In general, there is a setXXX method for each type in the Java

programming language.

Using the PreparedStatement object updateSales, the following line of code sets

the first question mark placeholder to a Java int with a value of 75:

 updateSales.setInt(1, 75);

 31

The next line sets the second placeholder parameter to the string " Colombian ":

updateSales.setString(2, "Colombian");

After these values have been set for its two input parameters, the SQL statement in

updateSales will be equivalent to the SQL statement in the String object updateString.

Code Fragment 1:

String updateString = "UPDATE COFFEES SET SALES = 75

" + "WHERE COF_NAME LIKE 'Colombian'";

stmt.executeUpdate(updateString);

Code Fragment 2:

PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME

LIKE ? "); updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");

 updateSales.executeUpdate():

 If the SALES column were to be updated only once or twice, then there would

be no need to use an SQL statement with input parameters. But if it is updated often, it

might be much easier to use a PreparedStatement object. Once a parameter has been set

 32

with a value, it will retain that value until it is reset to another value or the method

clearParameters is called.

Creating the Complete JDBC Application

 All the codes that need to be executed should be written inside a class

definition. Then all the packages that are used in writing the codes are imported into the

class file defined, For the JDBC application, java.sql package must be imported to handle

all the SQL queries.

If a class is to be executed, it must contain a static public main method. This

method comes right after the line declaring the class and invokes the other methods in the

class. The keyword static indicates that this method operates on a class level rather than

on individual instances of a class. The keyword public means that members of any class

can access this method.

Using try and catch Blocks

 Java requires that when a method throws an exception, there be some mechanism

to handle it. Generally a catch block will catch the exception and specify what happens.

The try block contains the method Class.forName, from the java.lang package. This

method throws a ClassNotFoundException, so the catch block immediately following it

deals with that exception. The second try block contains JDBC methods, which all throw

SQLExceptions, so one catch block at the end of the application can handle all of the rest

of the exceptions that might be thrown because they will all be SQLException objects.

 33

Features and Advantages of JDBC

v Leverage Existing Enterprise Data

With JDBC technology, businesses are not locked in any proprietary architecture,

and can continue to use their installed databases and access information easily - even

if it is stored on different database management systems.

v Simplified Enterprise Development

 The combination of the Java API and the JDBC API makes application

development easy and economical. JDBC hides the complexity of many data access

tasks, doing most of the "heavy lifting" for the programmer behind the scenes. The

JDBC API is simple to learn, easy to deploy, and inexpensive to maintain.

v Zero Configurations for Network Computers

With the JDBC API, no configuration is required on the client side. With a driver

written in the Java programming language, all the information needed to make a

connection is completely defined by the JDBC URL or by a DataSource object

registered with a Java Naming and Directory InterfaceTM (JNDI) naming service.

Zero configurations for clients support the network-computing paradigm and

centralize software maintenance.

 34

v No Installation

A Pure JDBC technology-based driver does not require special installation; it is

automatically downloaded as part of the applet that makes the JDBC calls.

v Full Access to Metadata

The JDBC API provides metadata access that enables the development of

sophisticated applications that need to understand the underlying facilities and

capabilities of a specific database connection.

v Database Connection Identified by URL

JDBC technology exploits the advantages of Internet-standard URLs to identify

database connections.

Figure 13: Connecting to a Database System

 35

 The new JDBC 2.0 API adds an even better way to identify and connect to a

data source, using a Data Source object that makes code even more portable and easier to

maintain. In addition to this important advantage, Data Source objects can provide

connection pooling and distributed transactions, essential for enterprise database

computing. This functionality is provided transparently to the programmer.

 36

Chapter Five

Working of Online fault Diagnosis System

The information collected by grouping the components of the Robot are stored in

a database developed using MS Access. The architecture of the Fault Diagnosis system

developed using JDBC is shown below. The Java Applet developed is stored on the

Robot Server. From the link provided for the fault diagnosis applet, the users from

various places can send their choice and get back the desired results from the database.

The figure below shows the flow of data from the database to the user interface through

the Java database connectivity.

Access Database

Software in JDBC Technology

User Interface Applet on Robot Server Web Browsers

Request of diagnosis for a
combination of Major
System and its component

Results to display
on the interface

Figure 14: Architecture of Fault Diagnosis System

SQL Query Statement

Results of the Query Statement

 37

Development of the user interface

The interface developed is developed in the form of panels. The Java Swing classes

are used completely to develop the interface. There are totally three Panels in the

interface. The top panel contains the list for the major system and the list for the specific

components. There are also two labels used to indicate the presence of two lists to the

user. The top panel in itself is divided into two sub panels, each one having a label and a

list placed side by side. These two sub panels are then placed in the top panel using the

Grid Layout in the form of two rows and one column.

The middle panel contains the text fields displaying the results of the SQL queries

from the database. The labels on the left side of the panel indicate to the user, which text

field displays what information. The labels are stored in a panel called labelpanel and the

text fields are placed in Textfield panel. Again for the whole of the middle panel, a Grid

layout containing a row and two columns are applied. The bottom most panel contains

the button represented in the form of UC logo. Pressing the logo produces action events,

which in turn executes the queries and displays the results in the text fields. The layout of

the interface is shown below.

 TOP PANEL HAVING LABELS AND LISTS

MIDDLE PANEL HAVING LABELS AND TEXT

FIELDS TO DISPLAY RESULTS FROM THE SQL

QUERIES

BUTTON TAKING CARE OF ACTION EVENTS

 Figure 15: Layout of the User Interface

 38

The whole interface is stored as a Java component. Border layout is used to place

the panels in the components. The top panel, middle panel and bottom panel are

respectively placed in the north, center and south of the component using the border

layout commands.

Handling of the Action Events

 On pressing of the UC logo, which acts as the action-handling component, the

actionPerformed event of the button is provoked, which in turn executes the SQL query

on the database. The user has to first select the major system from the first list. Once an

item is selected, its action listeners are automatically invoked. The components of each

major system are in turn stored in individual Vectors, which is a dynamic array. Based on

the selection of the major system, the components of the system are automatically loaded

in the second list using the setlistdata method. Now the user has to select the specific

component for which he needs to find fault diagnosis. After selecting the major system

and the specific component, the pressing of the button will establish link with the

database using the Connection method and the query is automatically executed.

 The values obtained after executing the SQL query is stored in a result set

method. The getstring method is then used to assign the values stored in the result set

object to the corresponding text fields of fault symptom, reason for failure and the

solution to the problem. A separate method called display results is used to place the

values in the text fields. So in all there are two action events that will occur for each

choice made in the system list and component list. First is the automatic loading of

 39

the component list based on the selection of the major system. Second is the display

of results that will happen after the button press event. The exceptions that will occur

during establishing the connection and executing the queries are caught and printed

out in the main window. The flows of action events are shown in the diagram below.

Figure 16: Flow of Action Events

SELECTION OF MAJOR SYSTEM FROM LIST ONE

SELECTION OF ITEM FROM LIST TWO

BUTTON PRESS EVENT

ESTABLISHING LINK USING METHOD CONNECTION

STORING RESULTS IN RESULT SET

DISPLAYING RESULT SET ITEMS IN TEXT FIELDS

AUTOMATIC LOADING OF COMPONENT LIST

 40

Chapter 6

Conclusion and Recommendations

The online fault diagnosis system is built and it will be implemented into the

robotics sun web server to efficiently manage the fault diagnosis and fixing the same.

The online system will be accessible with any popular web browser like Internet

Explorer or Netscape Navigator. It will be available on the University of Cincinnati

robotics web server.

In future, if the computer used on the Bearcat Robot is enhanced to have a web

access and have an IP address on its own, it can be operated from a remote location

without even a need to go near the robot. This is possible by using Java Networking

classes and Object Streams to develop a Client-Server Application.

Client-Server Application will enable the accessing of the JDBC Fault diagnosis

System from the Robot itself, right on the competition site without the need for any other

external source of computer. In developing this application, the Robot Sun Server can be

used as the server on which the database and the programs are stored and the computer in

the Robot can be treated as a client. The user interface developed to access the database

can be stored in the client computer, so that during the competition, the Fault Diagnosis

system can be accessed directly on the site.

The same concept of Client – Server application can also be used to drive and

activate the robot, without even going near the robot, provided there is an IP address for

the computer used in the robot. The user interface similar to the one in JDBC application

can be developed using Java Swing classes according to the requirements of the system

 41

developed. The computer in the robot is used as the server and the client can be from any

part of the world, provided a connection is established between the server and the client

using the IP numbers of the respective computers. Thus by running the server program,

the commands required to activate the robot can be written and included in the client

program and the robot can be activated using the interface from the client program.

 42

References

[1] Gregory Dudek, Michael Jenkin, Computational Principles of Mobile Robotics,

ch4, Cambridge University Press, New York, 2000

 [2] Nikam, B. Umesh, “A fault diagnostic system for an unmanned autonomous

mobile robot”, Masters Thesis, 1997

[3] Sampath Kanakaraju, “Online fault diagnostic system for an unmanned

autonomous mobile robot”, Masters Thesis, 2000

[4] Deitel & Deitel, JAVA – How to program, ch 18, Prentice Hall, New Jersey,

1999

[5] Fred R. McFadden, Jeffrey A. Hoffer, Mary B. Prescott, Modern Database

Management, ch3, Addison-Wesley, New York, 1999

[6] David Flanagan, Jim Farley, William Crawford, Kris Magnusson, Java Enterprise

in a Nutshell, ch5, O’Reilly & Associates, Inc., Sebastopol, CA, 1999

 43

Appendix A

 Program Scripts that are used in the Online Fault Diagnosis System

Program to take care of the Button Handling Events

import java.util.*;
import javax.swing.event.*;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.sql.*;

public class buttonevents implements ActionListener
 {
 private listpanel lp;
 private ltpanel lt;
 private Connection connection;

 JButton submit;

 public buttonevents(listpanel s,ltpanel l, Connection c1)
 {
 lp = s;
 lt = l;
 connection = c1;

 Icon img1 = new ImageIcon("robologo.gif");

 submit = new JButton(img1);
 submit.setBackground(Color.pink);

 submit.addActionListener(this);
 }

 44

 public void actionPerformed(ActionEvent e)
 {
 try
 {
 String query = " SELECT FaultSymptoms,ReasonforFailure,Solutions FROM
dbaccess " +
 " WHERE (System ='" + sp.test.getSelectedValue() + "') AND
(Component ='" + sp.quest.getSelectedValue() + "') ";

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery(query);
 display(rs);
 statement.close();
 }

 catch(SQLException sqlex)
 {
 sqlex.printStackTrace();
 }
 }

 public void display(ResultSet rs)
 {
 try
 {
 rs.next();

 lt.fsymptom.setText(rs.getString(1));
 lt.rff.setText(rs.getString(2));
 lt.solution.setText(rs.getString(3));
 }

 catch(SQLException sqlex)
 {
 sqlex.printStackTrace();

 }
 }
 }

 45

Program Designing the List and Labels Panel

import java.util.*;

import javax.swing.event.*;

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

import java.sql.*;

public class listpanel extends JPanel

 {

 JPanel panelone,paneltwo;

 JList systemlist,componentlist;

 Vector mech = new Vector();

 Vector vision = new Vector();

Vector power = new Vector();

 Vector sonar = new Vector();

 String system[]= { "Mechanical", "Vision" , "Power", "SONAR"};

 public listpanel()

 {

 JLabel main =new JLabel("Select the Major System :");

 JLabel sub =new JLabel("Select the Specific Component :");

 46

 systemlist = new JList (system);

 systemlist.setVisibleRowCount(2);

 systemlist.setFixedCellHeight(18);

 systemlist.setFixedCellWidth(88);

 systemlist.setBackground(Color.pink);

 systemlist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 componentlist = new JList();

 componentlist.setVisibleRowCount(4);

 componentlist.setFixedCellHeight(18);

 componentlist.setBackground(Color.pink);

 componentlist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

mech.addElement("Wheel1 ");

 mech.addElement("Servo Motor2 ");

 mech.addElement("Wheel Shaft");

 mech.addElement("Shaft Keys");

 mech.addElement("Wheel2");

 mech.addElement("Fitting1");

 mech.addElement("Fitting2");

 mech.addElement("Alignment1");

 mech.addElement("Lubricant");

 mech.addElement("Alignment2");

 mech.addElement("Coupling");

 47

 mech.addElement("Servo Motor1");

 vision.addElement("CCD");

 vision.addElement("ISCAN1");

 vision.addElement("Vision Threshold2");

 vision.addElement("Switching Unit1");

 vision.addElement("Switching Unit2");

 vision.addElement("ISCAN2");

 power.addElement("Battery1");

 power.addElement("Battery2");

 power.addElement("Fuse");

 power.addElement("Battery3");

 power.addElement("Invertor");

 power.addElement("Main Switch");

 power.addElement("SONAR Motor");

 power.addElement("Servo Motor");

 power.addElement("Solenoid");

 sonar.addElement("PID");

 sonar.addElement("Polakit1");

 sonar.addElement("Polakit2");

 sonar.addElement("SONAR Wire1");

 sonar.addElement("Polaroid");

 sonar.addElement("Program");

 48

sonar.addElement("SONAR Wire2");

 sonar.addElement("SONAR Height");

 sonar.addElement("Fastening");

 panelone= new JPanel();

 panelone.add(main);

 panelone.add(new JScrollPane(systemlist));

 panelone.setBackground(Color.pink);

paneltwo = new JPanel();

 paneltwo.add(sub);

 paneltwo.add(new JScrollPane(componentlist));

 paneltwo.setBackground(Color.pink);

 setLayout(new GridLayout(2,1));

 add(panelone);

 add(paneltwo);

systemlist.addListSelectionListener(new ListSelectionListener()

 {

 public void valueChanged(ListSelectionEvent e)

 {

 if(systemlist.getSelectedValue() == "Mechanical")

 {

 componentlist.setListData(mech);

 }

 49

 else if(systemlist.getSelectedValue() == "Vision")

 {

 componentlist.setListData(vision);

 }

 else if(systemlist.getSelectedValue() == "Power")

 {

 componentlist.setListData(power);

}

 else if(systemlist.getSelectedValue() == "SONAR")

 {

 componentlist.setListData(sonar);

 }

 }

 });

 }

 }

 50

Program Designing the Labels and Text Fields displaying results from the Database

import javax.swing.event.*;

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class ltpanel extends JPanel

 {

 JPanel labelpanel,textpanel;

 String labelstring[]= { " Possible Fault Symptom "," Reason for Failure ","

Corrective measures to be taken" };

 JTextField fsymptom,rff,solution;

 public ltpanel()

 {

 labelpanel= new JPanel();

 labelpanel.setLayout(new GridLayout(labelstring.length,1));

 for(int i=0 ; i< labelstring.length ;i++)

 labelpanel.add(new JLabel(labelstring[i]));

 labelpanel.setBackground(Color.pink);

 51

 textpanel = new JPanel();

 textpanel.setLayout(new GridLayout(labelstring.length,1));

 fsymptom = new JTextField(15);

 fsymptom.setBackground(Color.pink);

 textpanel.add(fsymptom);

 rff = new JTextField(15);

 rff.setBackground(Color.pink);

 textpanel.add(rff);

 solution = new JTextField(15);

 solution.setBackground(Color.pink);

 textpanel.add(solution);

 setLayout(new GridLayout(1,2));

 add(labelpanel);

 add(textpanel);

 }

 }

Program establishing connection with the database driving other programs

import javax.swing.event.*;

import java.awt.*;

import java.awt.event.*;

 52

import javax.swing.*;

import java.sql.*;

public class driverprogram extends JFrame

 {

 private listpanel lp;

 private ltpanel lt;

 private buttonevents bev;

 private Connection connection;

 private String url;

 public driverprogram(String name)

 {

 super(name);

 Container c = getContentPane();

 c.setLayout(new BorderLayout());

 lp = new listpanel();

 c.add(new JScrollPane(lp),BorderLayout.NORTH);

 lt = new ltpanel();

 c.add(new JScrollPane(lt),BorderLayout.CENTER);

 try

 53

 {

 url = "jdbc:odbc:dbaccess";

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

connection = DriverManager.getConnection(url)

 }

 catch(ClassNotFoundException cnfex)

 {

 cnfex.printStackTrace()

 }

catch(SQLException sqlex

{

 sqlex.printStackTrace()

 }

catch(Exception ex)

 {

 ex.printStackTrace()

 }

 54

 bev = new buttonevents(lp,lt,connection);

 c.add(bev.submit,BorderLayout.SOUTH);

 setSize(575,390);

 show();

}

 public static void main(String args[])

 {

 driverprogram s = new driverprogram(" Online Fault Diagnosis System ");

 s.addWindowListener(new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

);

 }

 }

 55

Appendix B - Contents of Database Table

System

Component Fault Symptoms Reason for Failure Solutions to the Fault

Mechanical Wheel2 Wheel coming off the shaft Screw coming off the retainer
Check the size of the retainer screw

size and secure it tightly

Mechanical Fitting1
Heating of the main wheel

bearings
Misalignment of the bearing and

the plumber block
Check the levels with the spirit levels

and adjust the plumber block

Mechanical Fitting2 Wheels jammed
A bulged shaft due to improper

fit
Filing or grounding of the shaft and
inner hub of the wheel is necessary

Mechanical Alignment1
Wheels doesn't turn

smoothly
Improper lubrication and

alignment
greasing on the inner surface of the

coupling is necessary

Mechanical Lubricant
Increase in the gear meshing

noise Lubricant level in the gearbox
The lubricant levels must be checked

and filled with specified grade oil

Mechanical Alignment2 Heating of servo motors
Alignment between servo motor

and the gear box shaft
Horizontal and vertical alignment of

the shafts to be done

Mechanical Coupling Heating of servo motors Improper coupling alignment

Check the coupling between motor
and gearbox and lubricate them

frequently.

Mechanical
Servo
Motor1

Servo motors turns very
slowly Amplifier output is insufficient

Re-adjust amplifier gain value and
PID values

Mechanical
Servo
Motor2

Servo motor doesn't rotate
according to the pulses Improper feedback

Make sure encoder meshes without
slip and check the feedback circuit

Mechanical Wheel Shaft
Wheel Shaft slipping out of

coupling Bending of wheel shaft

The wheel shaft must be secured
with a collar on the inner side of the

bearing

Mechanical Shaft Keys Key Moving out of its place
Shaft gets disengaged from the

coupling and Robot stops
The shaft keys must be tightened at
regular intervals with the Allen screw

Vision
Vision

Threshold1 No points picked Threshold limit not reached Adjust threshold

Vision CCD No points picked CCD camera not working
Check connections wrt to the

schematic diagram

Vision ISCAN1 Coordinates not available ISCAN tracker is not functioning Check the circuit and connections

Vision
Vision

Threshold2 Incorrect points picked
Points outside the line are

brighter
Readjust the threshold so that image

on the line is seen as black image

Vision
Switching

Unit1 Camera switch fails
Galil board controller not

working Reset the galil board

Vision
Switching

Unit2
Camera doesn't switch

properly Switching unit not working
Check connections wrt to the

schematic diagram

Vision ISCAN2 Cannot calibrate
Image obtained doesn't reflect
properly in the video monitors

Adjust the ISCAN settings written as
specified on the robot panel

 56

System

Component Fault Symptoms Reason for Failure Solutions to the Fault

Power Battery1 No Main power Battery down
Check voltage by the voltmeter which is

mounted on the side panel

Power Fuse No Power Fuse blown Check and replace fuse

Power Battery3 Low power Battery down
Check voltage by the voltmeter which is

mounted on the side panel

Power Invertor No Power Loose connection Check connection at the invertor

Power Main Switch No power Main switch in off position Switch the main on

Power
SONAR
Motor No main Power Battery down

Check the battery voltage and charge if below
the 36V

Power Servo Motor low power
Less voltage input due to low

battery voltage
Check the voltage for 36V and charge the

batteries sufficiently

Power Solenoid No power Solenoid coil is burnt
Check the voltage across the solenoid

energizing coil

SONAR PID No intermittent stops
Improper SONAR amplifier

output Adjust the PID values

SONAR Polakit1

Error in calculating
the obstacle

distance
Sufficient reflections not

received from the obstacle Adjust parameters in Polakit program

SONAR Polakit2

Error in calculating
the obstacle

distance Micro controller malfunction Adjust parameters in Polakit program

SONAR
SONAR
Wire1

Failure to detect
obstacle SONARs not working Secure connections, replace SONARs

SONAR Polaroid
Failure to detect

obstacle
Polaroid board may no tbe

working Secure connections, refer polaroid manual

SONAR Program
Failure to detect

obstacle
Polakit program values not

adjusted Reset parameters in the program

Mechanical Wheel1 Wheel rotating freely Shaft key missing
Remove the wheel and place appropriate shaft

key

SONAR
SONAR
Wire2

Failure to initiate
change in steering

Open in the circuit between
CPU and Polaroid board Secure connections

SONAR
SONAR
Height

False feedback
pulse Detects grass as obstacle

Adjust elevation to 18" from ground to Edge of
SONAR polaroid

SONAR Fastening
False feedback

pulse Loose SONAR polaroid
Check if the SONAR is secured to the motor

shaft

Power Battery2 Low battery power Battery down
Check voltage by the voltmeter which is

mounted on the side panel

 57

Appendix C – Establishing Connection between the Database and the

Java Program

Step One: Open Control Panel and Click on ODBC Data Sources

Step Two: Click on Add in the Screen that follows

 58

Step Three: Click on Finish after highlighting the MS Access Driver

Step Four: Select the Access file from the directory and press OK

 59

Highlighted Access file dbaccess confirms the connection established

.

