Personal tools
Document Actions

High Intensity Focused Ultrasound (HIFU) ablation

  1. Devarakonda SB, Stringer K, Rao N, Myers MR, Banerjee RK. Assessment of enhanced thermal effect due to gold nanoparticles during sing MR-guided high-intensity focused ultrasound (HIFU) procedures using a mouse-tumor model. ACS Biomaterials Science & Engineering. Link

  2. Devarakonda SB, Myers MR, Banerjee RK. Comparison of heat Transfer enhancement between magnetic and gold nanoparticles during HIFU sonication. J Biomech Eng. 2018;140(8):081003--5. Link

  3. Bera C*, Devarakonda SB*, Kumar V, Ganguli AK, Banerjee RK. Mechanism of nanoparticle mediated enhanced energy transfer during high-intensity focused ultrasound sonication. Physical Chemistry Chemical Physics, 2017;19(29):19075-82 (*equal contribution). Link
  4. Devarakonda S, Myers MR, Lanier M, Dumoulin C, Banerjee RK. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Lett., 2017;17(4):2532-2538. Link
  5. Devarakonda S, Myers MR, Giridhar D, Dibaji SAR, Banerjee RK. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound. PLOS ONE, 2017;12(4): e0175093. Link
  6. Devarakonda S, Dibaji SAR, Hariharan P, Myers MR, Banerjee RK. Characterization of focal location during high intensity focused-ultra-sound ablation in a tissue phantom, using remote thermocouple arrays. Journal of Medical Devices. 2016;10(2):020949. Link
  7. Hariharan P, Dibaji SAR, Banerjee RK, Nagaraja S, Myers MR.  Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.  IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014;61(12):2019-31.  Link
  8. Dibaji SAR, Al-Rjoub MF, Myers MR, Banerjee RK. Enhanced heat transfer and thermal dose using magnetic nanoparticles during HIFU thermal ablation-An in-vitro study. ASME J of Nanotech. in Engg. and Med., 2014; 4(4), 041003:1-8.  Link
  9. Dibaji SAR, Wansapura J, Myers MR, Banerjee RK. In-vivo monitoring of HIFU induced temperature rise in porcine liver using magnetic resonance thermometry. ASME Journal of Medical Devices, 2014; 8(3), 030937: 1-2.  Link
  10. Dibaji SAR, Banerjee RK, Soneson JE, Myers MR. Nonlinear derating of high-intensity focused ultrasound beams using gaussian beam modal sums. J Acoust Soc Am., 2013; 134(5): 3435-45.  Link
  11. Dasgupta S, Das P, Wansapura J, Hariharan P, Pratt R, Witte D, Myers M, Banerjee RK. Reduction of noise from MR thermometry measurements during HIFU characterization procedures. ASME J of Nanotech. in Engg. and Med., 2011; 2(2):024501.  Link
  12. Dasgupta S, Banerjee RK, Hariharan P, Myers M. Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels. Ultrasonics, 2010; 51(2):171-80.  Link
  13. Dasgupta S, Wansapura J, Hariharan P, Pratt R, Witte D, Myers MR, Banerjee RK. HIFU lesion volume as a function of sonication time, as determined by MRI, histology and computations. J of Biomech Eng., 2010;132(8):081005.  Link
  14. Myers MR, Hariharan P, Banerjee RK. Direct Methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming. J Acoust Soc Am, 2008;124(3):1790-1802.  Link
  15. Hariharan P, Myers MR, Maruwada S, Sliwa J, Banerjee RK. Characterization of high intensity focused ultrasound transducers using acoustic streaming. J Acoust Soc Am, 2008;123(3):1706-1719.  Link
  16. Hariharan P, Myers MR, Banerjee RK. HIFU procedures at moderate intensities--effect of large blood vessels. Phys Med Biol, 2007;52:3493-513.  Link

 

by zopeown last modified 2019-07-12 16:22